物业经理人

钢结构厚板焊接技术保证措施

941

  钢结构厚板焊接技术保证措施

  1 厚板焊接t8/5 值及焊接规范控制

  1.1 厚板焊接存在的一个重要问题是焊接过程中,焊缝热影响区由于冷却速度较快,在结晶过程中最容易形成粗晶粒马氏体组织,从而使焊接时钢材变脆,产生冷裂纹的倾向增大。因此在厚板焊接过程中,一定要严格控制t8/5。即控制焊缝热影响区尤其是焊缝熔合线处,从800℃冷却到500℃的时间,即t8/5 值。

  1.2 t8/5 过于短暂时,焊缝熔合线处硬度过高,易出现淬硬裂纹;t8/5过长,则熔合线处的临界转变温度会升高,降低冲击韧性值,对低合金钢,材质的组织发生变化。出现这两种情况,皆直接影向焊接结头的质量。

  1.3 对于手工电弧焊,焊接速度的控制:在工艺上规定不同直径的焊条所焊接的长度,规定焊工按此执行,从而确保焊接速度,其它控制采用电焊机控制,从而达到控制焊接线能量的输入,达到控制厚板焊接质量之目的。

  2. 厚板加热方法

  厚板焊接预热,是工艺上必须采取的工艺措施,对于本工程钢结构焊接施工采用电加热板预加热的方法。加热时应力求均匀,预热范围为坡口两侧至少2t,且不小于100mm 宽,测温点应在离电弧经过前的焊接点各方向不小于75mm 处;

  预热温度宜在焊件反面测量。

  经研究表明产生氢致裂纹要以下四项基本先决条件:

  I 敏感的微观组织(硬度是敏感度的一个粗略的指标)

  Ⅱ 适当的扩散氢含量

  Ⅲ 合适的拘束度

  Ⅳ 适宜的温度

  其中一项或几项是处于支配地位的,但这四项条件都必须具备才会产生氢致裂纹。防止氢致裂纹的实用方法就是预热,就是设法控制这些因素中的一项或几项。

  一般来说有两种不同的方法来预估预热温度。根据大量的裂纹试验,提出一种基于热影响区临界值,就可消除氢致裂纹的危险。被认可的临界硬度可能是氢含量的函数。另一种预估预热温度的方法是基于控制氢。为弄清低温时的冷却速度即300℃~100℃之间的冷却速度的作用,已经通过高约束度下坡口焊缝试验确立了临界冷却速度,化学成份以及氢含量之间的关系。

  通过上述的理论分析,经实践试验证明对于板厚不小于36mm 的钢板预热温度达到120℃即可,对于t=60~70mm 的钢板预热温度需达到150℃。

  3 层间温度控制

  3.1 厚板为防止出现裂纹采取加热预热后,在焊接过程中应注意的一个重要问题,就是焊缝层间温度控制措施。如果层间温度不控制,焊缝区域会出现多次热应变,造成的残余应力对焊缝质量不利,因此在焊接过程中,层间温度必须严格控制。

  3.2 层间温度一般控制在200℃~250℃之间。为了保持该温度,厚板在焊接时,要求一次焊接连续作业完成。

  3.3 当构件较长(L>10 米)时,在焊接过程中,厚板冷却速度较快,因此在焊接过程中一直保持预加热温度,防止焊接后的急速冷却造成的层间温度的下降,焊接时还可采取焊后立即盖上保温板,防止焊接区域温度过快冷却。

  4 焊接过程控制

  4.1 定位焊:定位焊是厚板施工过程中最容易出现问题的部位。由于厚板在定位焊时,定位焊处的温度被周围的“冷却介质”很快冷却,造成局部过大的应力集中,引起裂纹的产生,对材质造成损坏。解决的措施是厚板在定位焊时,提高预加热温度,加大定位焊缝长度和焊脚尺寸。

  4.2 手工电弧焊的引弧问题:有些电焊工有一种不良的焊接习惯,当一根焊条引弧时,习惯在焊缝周围的钢板表面四处敲击引弧,而这一引弧习惯对厚板的危害最大,原理同上。因此在厚板焊接过程中,必须“严禁这种不规范”的行为发生。

  4.3 多层多道焊:在厚板焊接过程中,坚持的一个重要的工艺原则是多层多道焊,严禁摆宽道。这是因为厚板焊缝的坡口较大,单道焊缝无法填满截面内的坡口,而一些焊工为了方便就摆宽道焊接,这种焊接造成的结果是,母材对焊缝拘束应力大,焊缝强度相对较弱,容易引起焊缝开裂或延迟裂纹的发生。而多层多道焊有利的一面是;前一道焊缝对后一道焊缝来说是一个“预热”的过程;

  后一道焊缝对前一道焊缝相当于一个“后热处理”的过程,有效地改善了焊接过程中应力分布状态,利于保证焊接质量。

  4.4 焊接过程中的检查:厚板焊接不同于中薄板,需要几个小时乃至几十小时才能施焊完成一个构件,因此加强对焊接过程的中间检查,就显得尤为重要,便于及时发现问题,中间检查不能使施工停止,而是边施工、边检查。如在清渣过程中,认真检查是否有裂纹发生。及时发现,及时处理。

  4 .5 在焊接过程中,采用埋弧自动焊接,以t=36mm 的钢板为例,其工艺参数见下表。从下表中可自出,正面和反面的首道都使用小的焊接线能量,这不单纯是因为担心正面的首道施焊时会将坡口的钝边焊穿,而主要是为了防止出现凝固裂纹。

  厚钢板对接焊后的变形主要是角变形。实践中为控制变形,往往先焊正面的一部分焊道,翻转工件,碳刨清根后焊反面的焊道,再翻转工件,这样如此往复,一般来说,每次翻身焊接三至五道后即可翻身,直至焊满正面的各道焊缝。同时在施焊时要随时进行观察其角变形情况,注意随时准备翻身焊接,以尽可能的减少焊接变形及焊缝内应力。

  5 消除焊接残余应力的焊接措施

  构件焊接时产生瞬时应力,焊后产生残余应力,并同时产生残余变形,这是客观规律。一般我们在制作过程中重视的是控制变形,往往采取措施来增大被焊构件的刚性,以求减小变形,而忽略与此同时所增加的瞬时应力与焊接残余应力。

  本工程主体结构中,大部分构件均属刚性大、板材厚的构件,虽然残余变形相对较小,但同时会产生巨大的拉应力,甚至导致裂纹。在未产生裂纹的情况下,残余应力在结构受载时内力均匀化的过程中往往导致构件失稳、变形甚至破坏。因此焊接应力的控制与消除在本工程制作过程中显得十分重要。应优先于构件的残余变形给予考虑。

  6 焊接应力的控制

  控制应力的目标是降低应力的峰值并使其均匀分布。其措施有以下几种:

  6.1 减小焊缝尺寸

  焊接内应力由局部加热循环而引起,为此在满足设计要求的条件下,在深化设计过程中,不应加大焊缝尺寸和余高,要对其焊缝尺寸给予优化,焊缝坡口要合理,尽量采用双面坡口,要转变焊缝越大越安全的观念。

  6.2 减小焊接拘束度:

  拘束度越大,焊接应力越大,首先应尽量使焊缝在较小拘束度下焊接。如长构件需要拼接板条时,要尽量在自由状态下施焊,不要待到组装时再焊,应按工艺先将其拼接工作完成,再行组装构件。若组装后再焊,则因其无法自由收缩,拘束度过大而产生很大应力。

  6.3 采取合理的焊接顺序。

  在焊接较多的组装条件下,应根据构件形状和焊缝的布置,采取先焊收缩量较大的焊缝,后焊收缩量较小的焊缝;先焊拘束度较大而不能自由收缩的焊缝,后焊拘束度较小而能自由收缩的焊缝的原则。

  A.构件卧放于平台上:先焊对接缝,次焊垂直角焊缝。再焊平面角焊缝。

  B.沿焊缝长度而言,每条缝应采用由中向外,逐步退焊。就构件平面而言亦应采用由中向外(四周)分散逐个焊接。

  6.4 采用补偿加热法

  在构件焊接过程中为了减少焊接热输入流失过快,避免焊缝在结晶过程中产生裂纹,因此当板厚达到一定厚度时,焊前应对焊缝周边一定范围内进行加热,加热温度视板厚及母材碳当量(CE)而定此即为焊前预热。

  当构件上某一条焊缝经预热施焊时,构件焊缝区域温度非常高,伴随着焊缝施焊的进展,该区域内必定产生热胀冷缩的现象,而该区域仅占构件截面中很小一部分,此外部分的母材均处于冷却(常温)状态,由此而对焊接区域产生巨大的刚性拘束,造成很大的应力,甚至产生裂纹。

  若此时在焊缝区域的对称部位进行加热,温度略高于预热温度,且加热温度始终伴随着焊接全程,则上述应力状况将会大为减小,构件变形亦会大大改观。

  6.5 对构件进行分解施工。

  对于大型结构宜采取分部组装焊接,结构各部分分别施工、焊接,矫正合格后总装焊接。

  本工程中各大型构件均将采用此方法施工,在对控制应力而言有如下优点:

  6.5.1 构件施工区域划小,每个区域内焊接应力方向单一,降低了焊件刚度,创造了自由收缩的条件;

  6.5.2 由于施工区域的缩小,扩大了焊工施焊空间,可以较大范围采用双面坡口,减少了焊缝熔敷金属的填入,进而降低了焊接热输入总量;

  6.5.3 有利于构件焊接变形矫正与应力释放;

  6.5.4 各部件总装时,焊接方向单一,自由收缩条件良好,有利于应力控制。

  7 焊接应力的消除

  尽管采取以上措施来控制焊接应力,但因本工程构件的特殊性,焊接完工后依然存在相当大的应力,为此有必要从以下几个方面来采取措施,进一步消除构件残余应力。

  7.1 利用对零件整平消除应力

  钢板在切割过程中由于切割边所受热量大、冷却速度快,因此切割边缘存在较大的收缩应力。中、薄板切割后产生扭曲变形,便是这些应力释放的后果。对于厚板由于其抗弯截面大,不足以产生弯曲,但收缩应力存在是客观的。因此在整平过程中加大对零件切割边缘的反复碾压,这对产生的收缩应力的消除极为有利。

  7.2 进行局部烘烤释放应力

  构件完工后在其焊缝背部或焊缝二侧进行烘烤。

  此法过去常用于对“T”形构件焊接角变形的矫正中,不需施加任何外力,构件角变形即可得以校正。由此可见只要控制加热温度与范围,此法对消余应力是极为有效的。

  7.3 采用超声波震动消除应力

  超声冲击(UIT)的基本原理就是利用大功率超声波推动工具以每秒二万次以上的频率冲击金属物体表面,由于超声波的高频、高效和聚焦下的大能量,使金属表面产生较大的压塑变形,同时超声冲击波改变了原有的应力场,产生一定数值的压应力,并使被冲击部位得以强化。此种方法对消除应力极为有效,经对650*650*80 箱形柱进行超声波震动消应力测试,焊接残余应力的消除率达75%以上。

  7.4 采用振动时效法消除应力

  振动时效的原理就是给被时效处理的工件施加一个与其固有谐振频率相一致的周期激振力,使其产生共振,从而使工件获得一定的振动能量,使工件内部产生微观的塑性变形,从而使造成残余应力的歪曲晶格被渐渐地恢复平衡状态,晶粒内部的位错逐渐滑移并重新缠绕钉扎,使得残余应力得以被消除和均化。振动时效法具有周期短、效率高、无污染的特点,且不受工件尺寸、形状、重量等限制,已经过大量的工程实践证明,对消除工件应力是有明显效果的。

  7.5 利用冲砂除锈的工序进行消除应力

  因为冲砂除锈时,喷出的铁砂束高达2500MP/cm2,用铁砂束对构件焊缝及其热影响区反复、均匀的冲击,除了达到除锈效果外,对构件的应力消除亦将会起到良好的效果。

  7.6 合理安排计划,增加时效期

  在生产上合理安排,“重要”“关键”节点提前开工,增加构件冲砂前的搁放周期,延长时效周期。

  8. 构件消除残余应力后的测量

  按上述措施对构件消除焊接残余应力后,为测得实际的消除效果,采用盲孔法进行残余应力的测量,测量点选择电渣焊和埋弧焊焊缝。

篇2:办公楼钢结构焊接施工工艺

  办公楼钢结构焊接施工工艺

  1、钢结构制作和安装的切割、焊接设备,其使用性能应满足选定工艺的要求。

  2、火焰切割前应将钢材表面距切割边缘50MM范围内的锈斑、油污等清除干净。切割宜采用精密切割,氧气纯度应达到99.5%-99.8%,丙烷达到国家标准纯度。氧、乙炔、丙烷切割工艺应符合参数规定。

  3、焊接坡口可用火焰切割或机械加工,但加工后的坡口型式与尺寸应符合要求。火焰切割时,切口上不得产生裂纹,并不宜有大于1.0MM的缺棱,切割后应清除边缘上的氧化物、熔瘤和飞溅物等。

  机械加工时,加工表面不应出现台阶。

  4、焊条、焊丝、焊剂和粉芯焊丝均应储存在干燥、通风良好的地方,并设专人保管。焊条、焊剂和粉芯焊丝在使用前,必须按产品说明书及有关工艺文件规定的技术要求进行烘干。低氢型焊条烘干后必须存放在保温箱(筒)内,随用随取。焊条由保温箱(筒)取出到施焊的时间不宜超过2h(酸性焊条不宜超过4h)。不符上述要求时,应重新烘干后再用,但焊条烘干次数不宜超过2次。焊丝宜采用表面镀铜,非镀铜焊丝使用前应清除浮锈、油污。

  5、雨雪天气时,禁止露天焊接。构件焊区表面潮湿或有冰雪时,必须清除干净方可施焊。在四级以上风力焊接时,应采取防风措施。

  6、不应在焊缝以外的母材上打火引弧。

  7、定位点焊,必须由持焊工合格证的工人施焊。点焊用的焊接材料,应与正式施焊用的材料相同,点焊高度不宜超过设计焊缝厚度的2/3,点焊长度宜大于40MM,间距宜为500-600MM,并应填满弧坑。如发现点焊上有气孔或裂纹,必须清除干净后重焊。

  8、T型接头角焊缝和对接接头的平焊缝,其两端必须配置引弧板和引出板,其材质和坡口型式应与被焊工件相同。手工焊引弧板和引出板长度,应大于或等于60MM,宽度应大于或等于50MM;焊缝引出长度应大于或等于25MM。自动焊引弧板和引出板长度,应大于或等于150MM,宽度应大于或等于80MM;焊缝引出长度应大于或等于80MM。焊接完毕后,必须用火焰切除被焊工件上的引弧、引出板和其它卡具,并沿受力方向修磨平整,严禁用锤击落。

篇3:钢结构焊接变形控制校正

  钢结构焊接变形控制及校正

  1、材料控制

  为保证钢结构构件焊成品的几何尺寸符合图纸要求,对所采购的钢管均要从看货、采购、装车、运输、卸车到加工车间全过程实行质量控制,要做到变形钢管不采购,装车、卸车要文明装卸,不摔、不轧、不砸,保证每根钢管的有效利用。在下料加工中做到变形钢管不下料。

  2、拼装控制

  在构件拼装过程中要认真消化设计图纸,在拼装工作平台上要精确放样,核对无误后将零件固定于平台上,各约束点均应固定可靠,夹紧,再行点焊定位。

  对焊缝分布不对称的构件可和用反变形法定位,正确估计反变形量,使焊后构件焊缝收缩后达到图纸要求。

  3、焊接操作控制见第五节

  4、构件变形的校正

  对焊成后变形超差的构件应予校正,对超差较少的构件可用人工校正,人工校正由经验丰富的操作工执行,必要时应加垫木校正,避免对构件造成塑性变形。

  对超差较大的构件可采用火焰校正,采用火焰校正时应根据构件的变形方向合理选择加热点和加热区域,火焰加热时应严格观察火焰颜色,把加热温度控制在600℃-800℃之间,防止加热过烧,根据变形量正确掌握加热温度和冷却时机,把构件变形调整到允差范围内。

  施焊时应先焊对接焊缝,后焊腹杆焊缝。先焊受力较大的焊缝,后焊受力小的焊缝。对长条桁架应从中间向两端自由端运动,使应力有释放空间,对已焊完的构件可采用锤击焊缝法降低应力。锤击应保持均匀适度,避免锤击过重而产生裂纹。

  也可在焊缝两侧局部加热法消除应力,这样可使加热的伸长变形补偿焊缝收缩变形以消除收缩应力。

相关文章